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An analysisis presented of the dynamics of a small deformable capsule freely suspended 
in a viscous fluid undergoing shear. The capsule consists of an elastic membrane which 
encloses another viscous fluid, and it deforms in response to the applied external 
stresses and the elastic forces generated within the membrane. Equations are derived 
which give its time-dependent deformation in the limit that the departure of the 
shape from sphericity is small. The form of the shear flow is arbitrary and a general 
(two-dimensional) elastic material is considered. Limiting forms are obtained for 
highly viscous capsules and for membranes which are area-preserving, and earlier 
results for surface tension droplets and incompressible isotropic membranes are 
derived as particular cases. Results for the viscosity of a dilute suspension of capsules 
are also given. 

The theoretical prediction for the relaxation rate of the shape is derived for an 
interface which has elastic properties appropriate for a red-blood-cell membrane, and 
is compared with experimental observations of erythrocytes. 

1. Introduction 
Barthbs-Biesel(l980) has recently proposed the use of the term ' capsule ' to describe 

a particle consisting of an elastic membrane which encloses a drop of an incom- 
pressible Newtonian fluid. Such a particle will deform when freely suspended in a 
second fluid undergoing shear, and provides a mathematical model to describe the 
flow-induced deformation of red blood cells and of emulsions stabilized by interfacial 
cross-linking polymerization. Previous work in this area has modelled the particles as 
elastic solids (Lighthill 1968) or as liquid droplets (Hyman & Skalak 1972); here we 
incorporate more of the known particle structure by restricting the elastic response 
to  a thin surface membrane whose properties are arbitrary but supposed known. This 
approach was taken also by Brennen (1975) in calculating the viscosity of blood. His 
model was restricted, however, to the case of instantaneously spherical capsules so 
that he was unable to calculate either their time-dependent deformation or their 
steady shape. Both these defects are remedied in the present analysis. 

The problem thus consists in finding the motion and deformation of the capsule 
under the influence of the viscous fluid forces. lt involves a free surface where the 
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boundary conditions (continuity of velocity and a balance between elastic and viscous 
forces) are applied and whose position is a priori unknown. Earlier work by Barthlts- 
Biesel (1980) has determined the steady deformation of an almost spherical capsule 
freely suspended in a simple shear flow. It is predicted that the particle reaches a 
steady shape, although its membrane rotates around that shape continuously. How- 
ever, the lack of time-dependence in the analysis means that i t  cannot be used to  
interpret relaxation experiments such as those of Schmid-Schonbein (1975) on red 
blood cells. Furthermore the membrane of the capsule is treatedas the two-dimensiohal 
limit of an isotropic, incompressible, three-dimensional elastic solid as is also the 
case for the linear time-dependent analysis of Brunn (1980). This restricts the 
applicability of the model, which cannot reproduce the surface-tension droplet case, 
nor encompass a wide class of two-dimensional membrane rheologies, such as that 
proposed by Skalak et al. (1973) for red blood cells. 

Consequently we here generalize the analysis of capsule deformation to include 
unsteady response to flow, and general two-dimensional elastic membranes. We 
assume only that the membrane has no bending resistance, is homogeneous, and has 
isotropic properties in the plane. It is then possible to recover as special cases the 
surface-tension-controlled interface, the infinitely thin three-dimensional solid, and 
the constant surface area interface postulated to describe the red-blood-cell mem- 
brane. It should be pointed out, however, that  the analysis remains deficient for 
red blood cells in two important respects. First, i t  is probable (Brennen 1975; Chien 
et al. 1978) that the erythrocyte membrane is viscoelastic rather than instantaneously 
elastic. Second, we consider here only near-spheres and thus only ‘sphered ’ (osmotic- 
ally swollen) red blood cells are appropriately modelled. We note later (§  8) how both 
these complications may be incorporated into a more sophisticated framework. 

An inherent difficulty in problems involving interaction between a fluid and a 
deformable solid arises from the two different formulations most naturally used : 
Eulerian for the fluid, and Lagrangian for the solid. This difficulty is compounded by 
the fact that classical membrane theory is expressed in a curvilinear co-ordinate 
system fixed in the membrane and which deforms with it. Although the twofold 
formulation cannot be avoided altogether, we have been led (in 992 and 3) to re- 
formulate the membrane theory in the same frame of reference as the fluid problem. 
This has the advantage that Cartesian tensors can be used, and furthermore the 
interaction between viscous and elastic forces can be expressed without difficulty. 
This approach is also taken by Secomb & Skalak (1982) in a similar problem. 

I n  5 4 we apply this theory to consider the time-dependent behaviour of an initially 
spherical capsule in the limiting case where its deformation remains small. The 
resulting shape-evolution equations are then studied for different membrane rheo- 
logical behaviours, for weak flows (95),  as well as for very viscous particles (56) .  I n  
particular, the result for the relaxation time of the shape of a constant-areamembrane 
is compared with experimental data 011 red blood cells. Finally ( 9  7) ,  the constitutive 
equation for a dilute suspension of such particles is derived and shown to be of the 
viscoelastic type. 

2. Determination of the stresses within the membrane 
I n  this section we derive an appropriate formulation to describe the local elastic 

response of a membrane under finite deformation. We consider a membrane whose 
thickness is vanishingly small, so that it has no bending resistnnce, and which is 
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transversely isotropic (about its local normal n) i.e. unchanged by rotations in its local 
plane surface. On the further assumptions that the membrane is purely elastic, and 
that the elasticity is local and instantaneous, its mechanical response:is characterized 
by a strain energy function:w = w(A,, A,, A3) ,  where A, is the principal stretch along n, 
and Al,2 are the principal planar stretches. In  view of the isotropy, w is a symmetric 
function of A,, A,. Finally we suppose that the ‘thinning ’ A, is determined locally by 
A,, A, so that A, = h,(A,, A,) and hence that the strain energy can be written as the 
symmetrical function w = w(Al, A2).  

Expressions for the components of stress referred to general non-orthogonal co- 
ordinate systems have been derived for such a membrane (see Green & Adkins 1960, 
5 4)) but in order to facilitate the connection with the fluid-mechanical problem which 
follows we prefer to rederive the results using Cartesian tensors throughout. For a 
three-dimensional solid, the results are well known (see e.g. Leigh 1968)) and we use 
a similar technique here to  derive analogous formulae for the two-dimensional case. 

Strain analysis 
I n  order to keep track of the positions of material points in the membrane, let the 
position of each point in some reference configuration be labelled by X, and suppose 
that a t  time t its position is x(X, t ) .  Let 

c = axpx 
be the relative deformation tensor. This is defined only for fibres dX which lie in the 
reference surface. I n  consequence, if N(X) is a normal to the initial surface, let 

A = C.(I-NN) 

so that A.  dX = 0 if dX is parallel to N, and A.  dX = C . dX if dX is perpendicular 
to  N. It follows from the assumption of two-dimensionality that n . A  = 0, where n 
is the normal to the final surface, and so 

A = (I-nn).ax/aX.(I-NN). (2.1) 

Thus A is the two-dimensional relative displacement gradient for the surface. (Note 
that if the initial and final states coincide C = I and A = I - nn.) The Cauchy-Green 
strain tensor is then 

A2 = A”. A, 

(and the metric tensor G of Green & Adkins (1960, equation 4.1.2) corresponds to 
A2 + NN), with eigenvalues A t ,  A:, 0 and corresponding eigenvectors el, e,, N. Finally, 
by the polar decomposition theorem we may put 

A =  R.A,  

with R a planar rotation (RT. R = I ) .  

Stress analysis 
I n  the same way as in the three-dimensional case, the principal stress resultants 
ul, u2 are given by 

I aw 
‘ A,A, aAi’ 

B .  = - A.- i = 1,2  (no summation), 
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and further the principal axes of the Cauchy stress are coaxial with those of A .  AT. 
It is convenient to define new strain invariants 

(2.2) 

(2.3) 

a = log A,A2 = +log {&[tr (A. AT)I2 - $ tr  [(A. AT)2]}, 
b = &(A:+A$)-l  = +t r (A .AT) - l ,  

so that ea is the local membrane area change, and then we have 

cr = c a R .  aa ( e , e , + e 2 e 2 ) + z  aw (AB,e,e,+A$e,e,)]. RT 
[a, 

1 aw 
-nn)+-- .AT ab 

This result corresponds to equations (4.3.12-16) of Green & Adkins (1960) in which 
the dependence of w on A, has been suppressed here in view of the constitutive assump- 
tion A, = A,(A,, A2).  

Load vector 
Finally, the local vector f exerted by the membrane is given by 

f = vs. t3, 

where V5 is the surface gradient operator V5 = (I - nn) . V . The expression for f may 
then be rewritten as 

nV.n+(l-nn).V 

+ ( I  - nn) . V . e-a-  (A. AT - I). ( I  - nn) . (2.4) 

The first term in this expression corresponds to a surface tension: it is directed along 
the normal, and is proportional to the surface curvature. The surface-tension co- 
efficient y = ca (awl& + aw/ab) depends upon the surface stretches through a, b. The 
second term has no normal component and arises from the variation of y in the surface. 
The third has both normal and tangential components and is generated by surface 
distortions which, in the limit of small deformations, are area preserving. 

Small deformations 
The expression above is valid for finite deformations of the membrane, but a simpler 
form is available, and is more convenient, when the deformations are small. We 
therefore consider 

in which e < 1. It is convenient also to replace b by the alternative invariant c G b - a, 
and to regard w = wfa, c ) .  Then 

a = &tr [ ( I  -nn).  (D + DT). ( I  -nn)] + O ( @ )  

[ F  1 

C = I+eD, n = N+O(c) 

and c = O(e2). The expression for the load becomes 

1 aW 

aa 
f = - e-a -nV.n+ (I -nn).V (A.AT - I). ( I  - nn) 

( 2) i?w 
aa, 

- - -e-"-nV.n+(l-nn).V ca-- 

(I - nn). (D + DT). (I - nn) + O(e2) 1 
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and, on expanding about E = 0, 

so that  
w = w,, + a, a + $(aZ + al) a2 + a3 c + 0 ( e 3 )  

8W aw 
aa ac a1 + a2 a + Ole2), e-a - = a3 + w, e-a- = 

giving finally 

f = - a1 nV. n -  a,anV. n +a,(l - nn). V a  
+ea,(l -nn).V. [(I -nn).  (D+ DT) .  (I - nn)] + O(e2). (2.5) 

Connection with three-dimensional elasticity 
If the membrane is considered to consist of an elastic material which is isotropic in 
three dimensions, then its strain energy function may be written w = w(I l , I z ,13 ) ,  
where 

1, = i(h:+h;+h;), I ,  = g(h,2+h;2+hp), I3 = h,A,h,. 

If further the material is incompressible, then I ,  = 1, and the elastic properties are 
defined by the parameters 

For small deformations, i t  may then be shown that the constants a$ for this class of 
materials are given by 

Q, = aw/arl, Y = awpr, .  

LX, = 0, a2 = 2(Q,+Y) = gE, a3 = @+Y = +E, 
where 0, Y are evaluated at  zero deformation, and E is the Young's modulus of the 
material. 

3. Specification of the capsule distortion 
We now turn to the problem of determining the global capsule deformation, We 

consider a membrane whose material properties are uniform, for which it is helpful to 
distinguish a t  the outset between two forms of material motion. When a capsule is 
placed in a shear flow its external shape changes in response to the flow forces until 
either a steady shape is set up or the deformation grows without bound and the 
particle breaks (or, exceptionally, a steady oscillation is set up). This time-dependent 
motion of the shape may be separated into a solid body rotation, and a stretching. I n  
addition, even in a steady state for the external shape, the material of the membrane 
will in general be rotating ('tank-treading') so that the deformation a t  the fixed 
Eulerian point x is constant in time, but that a t  a fixed point X of the material is not. 

Since the solid body rotation of the membrane generates no deformation and thus 
no elastic force, it is natural to subtract i t  out of the problem. This may be achieved 
by defining the capsule distortion relative to a frame of reference which rotates at a 
rate given by the sum of the solid body and tank-treading rot,ations. Because material 
points can move within the membrane, however, there is no uniquely specified angular 
velocity for the membrane as a whole; in any definition of a mean rotation rate for the 
points of the membrane, the weight to be attached to  each element of surface depends 
upon whether the original or deformed surface area is considered. The final results for 
stresses and shapes cannot of course depend on this choice (though the intermediate 
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mathematical details will), and we find it convenient to use the undeformed elements 
of surface to define an average rotation rate. This is therefore the instantaneous mean 
angular velocity of marked points evenly distributed on the reference surface. 

In  the case where the membrane is initially spherical, we want to consider as a 
reference state the sphere which has at  each instant of time the same angular velocity 
o as the membrane (defined above, and to be determined as part of the solution). 
This may be achieved by the following device: define the rotation matrix Q ( t )  
( Q T .  Q = 1) by 

so that Q ( t )  is the total rotation of the membrane up to time t ;  then, startingfrom the 
'fixed' reference sphere Y. Y = 1, let X = Q . Y. It follows that X . X = 1, and 

Q ( 0 )  = 1, Q(t )  = W .  Q(t ) ,  

x = 0 . X  (3.1) 

as required. Since the material of the membrane is uniform and instantaneously 
elastic, we may in computing the elastic load use X rather than Y to define the position 
of the material point before displacement. 

By analogy with the problem of determining the deformation of a surface-tension 
drop in a shear flow, we seek a deformation field which involves only second harmonics 
a t  leading order and consider 

(3-2) 

in which J and K are functions of time only. The instantaneous external shape of the 
capsule is then 

(3.3) 
with normal 

(3.4) 

indicating that at  leading order in e K represents motion of fibres within the surface, 
whereas J involves overall deformation of the surface too. 

We suppose further that J, K are symmetric and traceless second-rank tensors, so 
that they involve only second-harmonic distortions. In  the case of J, symmetry may 
be imposed without loss of generality, and tracelessness follows from conservation of 
the drop volume. For K we check aposteriori that the equations for its time evolution 
preserve these requirements. 

There is some interest in pursuing the calculation to O($) in particular for very 
high viscosity capsules. It is then convenient to regard J and K as describing the 
second harmonic component of the distortion at  all orders in e, though they define 
the full deformation only at  O(e). Then g(x) involves only harmonics of orders 0 and 
4. The Oth-order harmonics may be immediately computed from the volume con- 
servation requirement: 

with 
(3.5) 

and we may put 
(3.6) 

with J4, K, symmetric and traceless fourth-rank tensor functions of time. It should 
be noted that at  O(e2) the external shape is not specified by J alone; it involves also 
K and g. 

x = X + EK. X+eXX. (J  - K). X +e2g(X) + O(S'), 

r = 1x1 = 1+eX. J.X+O(s2) = l+sx. J.x/r2+0(~2), 

n = x / r  + 2exx. J . x/r3 - 28 J . x/r + O ( @ )  

B(x) = gox + fZ,(x), 

go = -3% J:  J-iI6K:Kt-i J:K, 

&(x) = K4 i xxx + XX: ( J4 - K4) XXX, 
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4. Governing equations for capsule deformation 
We consider a viscous capsule filled with an incompressible fluid of viscosity hp 

bounded by a two-dimensional elastic membrane and immersed in an incompressible 
fluid of viscosity p. We suppose that the outer fluid is sheared at  a rate G( E + SZ)  with 
E and SZ the symmetric and antisymmetric parts of the velocity gradient, and that 
the dynamics are inertialess. We seek to determine the time-dependent deformation 
of the particle in the limit of small shape distortions. This is the case when the elastic 
restoring forces are much larger than the viscous deforming stresses, or when the 
internal viscosity is high ( A  $ 1 )  and the vorticity non-zero. 

We non-dimensionalize the problem as follows: lengths arescaled by theundisturbed 
particle radius p and times by the shear time G-l. If a typical surface elastic modulus 
for the material is 01, then the ratio of elastic restoring forces to viscous deforming 
stresses is given by 

k = a/pGp. 

In non-dimensional form, the governing equations for the (time-dependent) drop 
deformation are 

V.u = 0, V .  a = 0, a = -pI+A(Vu+VuT) in V ,  
(4.1) 

[UIS = 0, 

U -  (E+SZ).x as IxI-+co, (4.2) 

[..n]s = -kf, (4.3) 

V.u = 0, V .  a = 0, a = -pl+(Vu+VuT) in f,) 

in which f is the elastic load exerted by the membrane on the fluid, and [Is denotes 
the jump of the bracketed quantity across S. By the linearity of the Stokes equations 
above we may put 

u = ue+uh, 
in which ue and uh represent respectively the velocity determined (instantaneously) 
by the elastic forces, and by the hydrodynamic forces. Each satisfies (4.1), and ue 
satisfies (4.3) with ue+O as 1x1 -too; uh obeys (4.2) with [ah.nIs = 0. 

4.1. Determination of ue 
We have shown above how the load vector f may be computed from the local de- 
formation gradient. It is straightforward to show that the displacement field (3.2) 
gives a deformed surface of curvature 

V.n = 2 + 4 ~ x .  J . X + O ( E ~ )  
and that 

D = K +  IX. ( J  - K). X/X2+ 2X. ( J  - K) X/X2- 2XXX. (J - K) .X/X4, 

giving a local area change characterized by 

a = E X . ( ~ J - ~ K ) . X .  

It follows after substitution into (2.5) that the load vector f is given by 

f = - 201, n + EL.  x + ~ x x .  M . x + O(a2), 

L = 4(a2 + a3) J - (6012 + 1001,) K, 
where 

and 
M = - 4(01, + 201, + 2013) J + ( 1201, + 16013) K. 
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Elastic load f 

J 
Applied flow 
G(E + a ) .  x 

FIGURE 1. Definition sketch for capsule. 

Thus L and M are both symmetric and traceless and so involve only second harmonics. 
Now the load - 2u,  n does not generate any velocity field, it merely raises the pressure 
inside the drop, and in consequence we need only find the fluid velocities produced by 
the O ( B )  terms above. Further, correct to O(s), this load can be considered to act on 
the unperturbed surface r = 1 rather than X, and so the solution of the Stokes' equa- 
tions is conveniently accomplished by means of Lamb's decomposition into spherical 
harmonics. We have 

6Te. x - gxx. Se. x + $r2Se.  x, X E  v, 
Ue = {6~e.x/r5-15xx.Te.x/r7-xx.~e.x/r5, h X E ~ ,  

and, using the four continuity requirements on u, a .n  at r = 1 ,  the four unknown 
tensors Se, $, Te, Pe may be determined. We find 

A 

Te = k(+b ,L+b ,  M), 
Se = 3%) M ,  

Te = k(&bo L + & M ) ,  
Se = - k($b, L + b, M). 

In  particular, for x E S, we have 

where 
ue = k ~ [ b ,  L.  x + blM . x + b, X X .  M . x + O ( C ) ] ,  ( 4 . 7 )  

b, = 1 / ( 2 h + 3 ) ;  b, = 2 ( 3 h + 2 ) / ( 1 9 h + 1 6 ) ( 2 h + 3 ) ;  b, = 2 / ( 1 9 h + 1 6 ) ,  

and 
b, = ( 1 6 h +  1 9 ) / ( 2 h + 3 ) ( 1 9 h +  16) .  

4 . 2 .  Determination of uh 
Taking for X the shape 

r = l + ~ x .  J.x/r2+0(~2), 

the velocity field uh for this problem is identical with that for the corresponding 
surface tension droplet, and may be found by the same method as that above. We 
find in particular that, for x E S, 

(4.8) 
where 

uh = 9.x+aoE.x+e[a,Xd(E. J).x+a,(E. J-  J.E).x]+O(s2), 

a, = 5 / ( 2 A + 3 ) ;  a, = 6 0 ( A - 1 ) / 7 ( 2 h + 3 ) 2  and u2 = 2 ( h - l ) / ( 2 h + 3 )  
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and 
Xd(E. J )  $(E. J +  J .E-$E:  JI) 

denotes a symmetric deviator of order two. (This expression plainly reduces to 

uh = (E+Q).x when h = 1 

for then fluid of the same viscosity may be regarded as filling all space.) 
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4.3. Evolution of the shape 
The evolution of the drop shape (through the variation of J and K in time) may now 
be determined from the kinematic condition 

x = ue+ uh for each x E S. (4.9) 

I n  order to allow for the possibility that the capsule shape adjusts on the elasticity 
time scale pp/a rather than the shear time G-l so that a/at = O ( k )  (which is O(&) for 
sufficiently large k), we retain E a/at terms. Consequently consistency demands that, 
whereas ue, uh have been determined correct to O(s) ,  the expression for x must include 
O(e2) terms as well. It follows from (3.2) that 

X = X + E [ K .  X + K .  X + XX. ( J  - K ) .  X + XX. ( J  - K ) .  X 

+ xx. ( J  - K ) .  x + xx. ( j  - K) . X] + E 2 [ g o X  +g,X + g4] + 0(9), 
in which 

x = 0 . X .  

Then, substituting the known expressions for ue, uh into (4.9)) and replacing x by X, 
we have 

= a.  X + a, E.  X + €{(a - W )  . K .  X + (a - 0). XX. ( J  - K ) .  X 

+a, E . K . X + a, E . XX. (J  - K) . Xi- a,( E . J - J . E) . X + a,Sd( E . J) . X} 

+ke(b,L.X+b,M.X+b,XX. M . X } + O ( E ~ , ~ E ~ )  (4.10) 

in which 9 * / 9 t  is a Jaumann derivative which rotates with w, the particle angular 
velocity. 

A useful aside may be made a t  this point concerning the limiting case of very viscous 
capsules, h -+ co. As noted by Rallison (1980) in connection with very viscous surface 
tension droplets, the error terms on the right-hand side of (4.10) arise from stretching 
rather than rotation of the capsule shape. Since the time scale for such stretching is 
given by the larger of the fluid viscosities p, hp and not G-’ directly, the error terms 
are not larger than 0 ( e 2 ,  kc , ) / (  1 + A ) ,  which is a useful improvement on the error 
estimate when h = O(s-l) (see 46). 

For modest A, it may be seen without difficulty that w = ~ + O ( E )  so that, to the 
order of accuracy given, the third and fourth terms of the right-hand side of (4.10) 
are negligible. The result is then to hold everywhere on the unit sphere X . X = 1, and 
the equation may be solved by the technique of Frankel & Acrivos (1970), which 
involves integrating the expression over the unit sphere, and taking advantage of the 
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orthogonality relations between spherical harmonics. Multiplying (4.10) by X and 
integrating, we obtain 

9* 9* 
9 t  9 t  

+ 2aoSd ( E .  K) + (*a0 +a,) (E .  J - J . E)  + &uO( E.  K -  K .  E)} 

+ E -  K + ' E -  ( J  - K) = IFZ +a0 E +s{($ao+a1) Sd (E. J )  

9% 
+ ks{bo L + (b,  + Qb,) M} +e l  &q, E: J + *ao E : K - E - g  

Similarly, multiplying (4.10) by XXX. and integrating, we find 

O(E', kc'). . (4.11) [ 9 t  o ] +  

( 9* 9 t  I 
9* 
9 t  E -  J = a0 E + E{$aoSd ( E .  K) + (a1 +$ao) Xd(E. J)> +ke{bo L+ (b ,+b , )  M) 

+ e l  +ao E: K + +ao E: J  go + O(E', ICE'). (4.12) 

Separating the symmetric and antisymmetric parts in (4.1 1 )  and rearranging, we have 

9* 
9 t  E - ( J - K) = $Eao[Sd ( E . J ) - Sd ( E . K)] + keb, M + O(@, kc'), (4.13) 

w = SL + E [ ( &  + a') ( E .  J - J E)  + &uO( E .  K -  K.  E)] + O(E'). (4.14) 

It may be shown from the incompressibility condition (3.5) that the isotropic terms 
in (4.11) and (4.12) are identically zero as they should be, for since 

K = a, E + O ( E ) ,  
9* 9* 

E -  J = E -  9 t  9 t  
9* 
9 t  €- -go  = ao[+E:K+&E: J], as required. 

Finally, the fourth-order harmonics may be separated to give 

(4.15) 
9* 9* a €34 = E Z  J4 = $[Sd4(EJ)-Sd,(EK)], 

where the fourth-order symmetric deviator is defined in indicia1 notation by 

Sd4 &jab) = g [Aij ,  + + 22 others 

- $ {&&4ijli + A,zj, + 10 others) + 5 others) 

+ &5(&ij &ab + &bj + sib &ja) (Allmm + AZmlm + AtmniZ)l. 

It may be seen from (4.14) that the membrane angular velocity w is independent of 
its elastic properties except insofar as they have determined J and K in past time; the 
elastic stresses are plainly unable to provide any net couple on the fluid here. It may at  
first sight seem surprising that w depends on the in-surface deformation K (if K and E 
are not coaxial). The reason is that the mean rotation rate of the membrane is defined 
relative to the original undeformed state and so a t  O ( E )  is biased by K. This dependence 
could be eliminated by an implicit definition of w relative t o  the deformed surface. 

It may be seen from (4.12) and (4.13) that equilibria are possible within the domain 
of validity of the analysis only if the forcing aoE is comparable in magnitude to 
either ESL or ksb,. This occurs if either k is large (weak flows) or h is large in a shear 
flow. The situation here is exactly analogous to that for a surface tension droplet, As 
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noted by Rallison (1980), e may be regarded as being small independently of the 
magnitudes of k and A, but the cases of interest arise when the smallness of the distor- 
tion (e) is induced by either weak flow ( k - l )  or high viscosity (A- l ) ,  and then c: can be 
identified with the small parameter. The physics in each case is different and we 
discuss them separately. 

5. Weakflows 
This case corresponds to L-tco  with h = o ( k ) .  The deformation of the particle is 

limited by the large elastic modulus a,  or by small values of the shear rate G or by 
both. Then, identifying B with L-l ,  equations (4.12) and (4.13) give 

(5.1) 1 
B 
9 t  B - K  = a,E+b,L+b,M+O(c:),  

9 
Bt 

e-(J-K) = b 2 M + 0 ( e ) ,  

in which B/9t  is a Jaumann derivative rotating with the vorticity 51. In  fact, at  this 
order 919% may be replaced by a/at but greater numerical accuracy is probably 
obtained by retaining the contribution from a. 

As might have been expected, the particle displays a viscoelastic behaviour with 
two relaxation times corresponding to the two deformation modes J, K (overall shape 
and in-surface stretching respectively). The relaxation times depend upon the viscosity 
ratio and the elastic interface properties. They are computed later for two particular 
choices of membrane elasticity. 

5.1. Equilibrium solutions 

A t  equilibrium for any steady flow, neglecting the vorticity terms, we find that 

so that both J and K are proportional to and coaxial with E. In addition, they are 
independent of A. This independence from h is to be expected for an extensional flow 
at all orders in e since the steady shape for the capsule involves no internal motion, 
the external shear stress is supported entirely by the elastic forces in the membrane 
and thus the distortion cannot depend upon the viscosity of the inner fluid, and so is 
independent of h. When vorticity is included, even in the steady state there is a 
tank-treading motion of the membrane, and, since its shape is non-spherical, an 
internal motion involving shear is generated and thus the steady deformation does 
depend on A. This dependence, however, appears only at  O(e2),  since the solution here 
is a perturbation away from a sphere. 

If the vorticity terms in (5.1) are included, the equations for the components of J, K 
remain linear, but have a more complex structure, and a numerical procedure for the 
matrix inversion is more appropriate. The equilibrium values do then depend upon A. 
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5 .2 .  Stability of equilibrium 

The question arises as to the range of elastic parameters for which the equilibrium 
found above is stable. It is a straightforward matter to perturb the solution and to 
determine from the corresponding eigenvalue problem whether the perturbation grows 
or decays. We find that necessary conditions for stability are 

(5.3) 
20(h + 1 )  a,+ (23h+ 32)  a, + 7 ( 7 h +  8 )  a3 > 0 

and 
a,( 3a,  + 5a3) + 2a3(a, + a3) > 0. 

It is clear that the coefficient a, represents the pre-stress of the membrane (i.e. the 
isotropic tension in the membrane in the absence of an applied load); it is therefore 
determined by the pressure difference between the interior and exterior of the un- 
deformed membrane. It can be seen from the stability criteria (5.3) that if 301, + 5a3 > 0 
sufficient (positive) pre-stress is always stabilizing, and that throughout the parameter 
regime sufficient negative pre-stress always destabilizes the equilibrium. 

The signs of a2,a3 depend upon whether the material of the membrane strain- 
hardens or softens on deformation near its equilibrium. For a strain-hardening 
material, a2, a3 > 0 and thus under positive surface tension the equilibrium solutions 
above are stable. If either is negative, however, it is physically clear that there is a 
possibility of a run-away phenomenon whenever a fluid load is applied (e.g. a2 < 0, 
a, = a3 = 0). 

In the case where the membrane is not prestressed, a, = 0, the equilibrium is 
given by 

1 

with stability only if a3 > 0 and a2 > - a3 for all values of A. Thus in this case a,, a3 
may be determined by measured membrane deformation at equilibrium. 

The above results can be explored in more detail for three particular types of 
membrane behaviour. 

5.3 .  Three-dimensional isotropic incompressible membrane 

A case of interest is a membrane which is the infinitely thin limit of a three-dimensional, 
isotropic incompressible material. Then the elastic coefficients ai are given in non- 
dimensional form by 

a1 = 0, a2 = $, a3 = &. 
The characteristic elastic modulus a is identified with the Young’s modulus. In  this 
case the differential system defining the shape evolution of the particle becomes 

5E 
+ 2 A + 3 .  

- 2(47A + 48)  12(7A + 8 )  1 ‘ i ( J ? K )  = 3 ( 2 h + 3 ) ( 1 9 h + l 6 )  3 2 ( 2 h + 3 )  - 4 8 ( 2 A + 3 ) )  ( J K K )  ( ) 
The solution of this system is straightforward: 

1 
K = $ E +  [C,(A + 24 + A )  e-t/T1 + C,(A + 24 - A )  e- t l~a] ,  

~ ( 2 h + 3 ) ( 1 9 A +  16) 

[ C ,  e-t/Ti + C ,  e - f / ~ ] ,  
32 

(19h+ 1 6 ) ~  
J - K  = 5E + 
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where 

and where the two characteristic relaxation times of the system are given by 

A2 = 5377h2 + 14256h + 9792, 

263 

i = 1,2, 
3( 19h + 16) (2h + 3) E 

7. = 
5(19h + 24) + ( -  ) i A ’  

in agreement with Brunn (1980). It should be noted that the steady-state solution is 
independent of h : 

J = gzz E, K = $5 E, 
which is identical to the result obtained earlier by BarthBs-Biesel(1980). Furthermore, 
this equilibrium solution is always stable. 

5.4. Pure surface tension membrane 
Another particular case which is included in the model is the surface tension droplet. 
Then the membrane surface energy is proportional to its area, so that w = ea, 

and a, = a, a2 = a3 = 0. In consequence, L = 0, M = - 4a J (of course the elastic 
stresses are independent of the in-surface deformation represented by K in this case) 
and thus, neglecting the vorticity terms, 

aJ 5E 40(h + 1) J 
at 2h+3  (2A+3)(19A+l6)’  

E -  = a , E - 4 ( b , + b , ) J  = -- 

The latter equation is in agreement with the standard result; the former does not 
appear in such analyses, since it involves motions within the surface which are irrele- 
vant to the surface tension response. Indeed at  equilibrium 

E, 
19h + 16 

= 0 so that J = 
at 8(h + 1 )  

but plainly a K / a t  $. 0 :  there is still continuous shearing of the fibres within the mem- 
brane. In  consequence, the equilibrium (5.2) is not appropriate here. 

We note in passing that the stability of this equilibrium plainly demands that the 
coefficient of J be positive, i.e. that a, > Oso that the surface tension is positive; 
it is physically clear that if a, < 0 the deformation will grow without bound. 

5.5.  Constant area membrane 
A particular case of importance occurs when the elastic properties of the membrane 
are such that its area is preserved to a close approximation. Since the sphere is the 
shape of minimal surface area for given volume, its overall area is stationary with 
respect to small (linear) perturbations to the shape, and since the local area change 
is given by 

as noted following equation (2.3), the constancy of area requires J = $K to a good 
approximation specified below. 

Mathematically, the limit of interest is a2 & a,, a3, and as may be seen in the 
equilibrium solutions (5.2), this gives J, K - E/a, not E/a2 by virtue of the stationarity 

u = C X . ( ~ J - ~ K ) . X ,  
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property mentioned above. An example is the constitutive equation proposed by 
Skalak et al. (1973) for the red-blood-cell membrane. They choose 

w = $B[4 (1  + b ) 2  - 4( 1 + b)  - 2eZa] + ++2(e4a,- 2eZa), (5 .4)  

in our notation, and for small deformations this gives 

a1 = 0,  a2 = C, a3 = QB. 
With the suggested numerical values B = 0*005dyne/cm, C = 5dyne/cm we have 
az B al, a3 as required. 

Now in the time-dependent case we put 

J = $ K + F ,  (5.5) 

so that f becomes small (O(a;l)) on a very rapid time scale. Then 

L = - 4 a 3 K + 4 a 2 F ,  

M = (40!,3-6al)K-8a,F. 

Since F is small, after the initial transient 9 F / 9 t  < 9 K / 9 t ,  hence on elimination of 
the a2 F terms (which are O( 1)  in view of the largeness of a2),  we find 

This equation has exactly the same structure as that for the time evolution of a 
surface-tension drop, in which the surface-tension coefficient has become 2a3 + 3a1, 
and with a slightly different dependence on the viscosity ratio A. In particular, the 
equilibrium solution here (at 51 = 0 )  is independent of A, whereas it is not in the 
surface-tension case. 

Because at  O ( E ~ )  any perturbation of the spherical shape involves an overall area 
increase, the range of validity of the equation above is small. Terms of order a2 e2 have 
been neglected, and thus the result is formally correct only for E < aJa2 < 1. 

On the other hand, the estimate of the relaxation rate 7 for the shape given by (5 .6) ,  
namely (in dimensional terms) 

should still be appropriate for analysing the longer time scale of relaxation for constant 
area membranes which are substantially deformed and not close to being spherical. 
For instance, for red blood cells, Schmid-Schonbein (1975) has measured the relaxa- 
tion of the shape to (non-spherical) equilibrium after the cessation of a steady shear 
flow, and obtains a return to equilibrium after a time of about 0.6 seconds (correspond- 
ing say to 3701‘ 47). Theoretically, the constitutive equation (5 .4)  proposed by Skalak 
et al. (1973) can be used to estimate the elastic parameters in 7 :a3 N 2.5 x 10-3 
dyne/cm; a1 = 0 (no pre-stress); the ambient fluid viscosity in the experiments was 
60 cp; taking for p the radius of the sphere of red-blood-cell volume, we have p N 3 p m ;  
and choosing A N 0.1 we obtain r N 0.2 s, which is consistent with Schmid-Schonbein’s 
observation. It should be noted however that a viscoelastic component of the 
membrane response could also generate a relaxation time constant. It is not clear at  
present which mechanism is principally responsible for the erythrocyte data. 
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6. Highly viscous capsules 
We consider in this section the case of highly viscous capsules h -+ 00 for which the 

strength of the flow is unlimited except that the vorticity is non-zero. We suppose the 
capsule has been deformed by the flow and take E = A-1. Then reverting to equation 
(4. lo), with the improved error estimates discussed in the paragraph which follows it, 
the coefficients ai, bi may be replaced by their asymptotic values as h-tco, and the 
equation may be solved by the Frankel & Acrivos technique as before, noting that on 
this occasion the terms involving o - G? are not negligible. 

We find that the rotation rate of the capsule is now 

(J (6.1) 
1 
h w =n+-(E. J -  J .E )+O - , 

and that 
1 
h Q* J / 9 t  = $E -t -[-YE ++fSd (E. K) + Sd ( E .  J) + Sd( J . E .  K) 

Similarly, the evolution equations for the fourth-order tensors are 

and thus do not involve the elasticity of the membrane at  this order. 
The O( 1)  version of these equations is 

_ -  9J --- 9 K  - tE+O(i,:), 
9 t  9 t  

and hence at  this order the shape is unaffected by the membrane properties altogether 
(and so is identical to the surface-tension droplet). These equations represent a periodic 
motion with no tendency toward equilibrium, the higher-order O ( k / h )  terms being 
necessary to drive the shape toward equilibrium at large times. 

In two special cases the equations above may be further simplified. 

6.1. Weak flows 

If k is of the same order of magnitude as A, we have 

and the same result may be obtained from the high-h limit of equation (5.1) pro- 
vided that a Jaumann derivative is used there. The position of the equilibrium given 
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by (6.5) does depend at  leading order on the vorticity Q, whereas, for modest A, the 
equilibrium for weak flows is independent of 22. 

6.2. Constant area membrane 
A second double limit of interest occurs when the capsule is both highly viscous, and 
has a constant area membrane (az % al, as). It is then straightforward to show either 
from (6.1)-(6.3) or from (5.6) (again provided that a Jaumann derivative is used) that 

where the smaller elastic modulus is relevant as regards the definition of k. 

7. Dilute solution rheology 
We turn finally to examine the constitutive equation for a dilute suspension of 

identical capsules. Batchelor (1970) has shown that the deviatoric bulk stress in the 
suspension is given by 

Q = 34 E + @), 

where q5 is the volume concentration of particles, and 5 is the average stresslet exerted 
by a single particle on the fluid. We have determined ŝ , with neglect of the interactions 
between particles, as 

5(A- l )  5 1 1 
S=- E--- k€L-- ksM + O(s, k s 2 ) ,  

2 h + 3  2 2 h f 3  2A+ 3 

The first term in ( 7 . 1 )  arises from the failure of the interior fluid to deform with the 
ambient rate of strain E when A =/= 1, and the last two from the elastic stresses generated 
by the membrane. The constitutive equation for the suspension then follows by 
relating L, M to J, K through (4.5, 6) and using the time-evolution equations for J, K 
given in earlier sections as appropriate for the physical properties of the capsule. 

Not surprisingly, the constitutive equations have the same structure as the results 
of Roscoe (1967) and Goddard & Miller (1967) for suspensions of elastic and visco- 
elastic homogeneous particles whose deviation from sphericity is small. The most 
obvious difference here is that the suspension has a viscoelastic behaviour with two 
time constants. The structure of the suspension is described by two second-rank 
tensors J, K at leading order, and thus the constitutive equation is a generalization 
of that proposed by Hand (1962) and discussed by BarthBs-Biesel & Acrivos (1973) 
in the context of suspensions of particles with ellipsoidal anisotropy. 

If the equilibrium values (5.2) of J, K are incorporated into (7.1) we find a zero- 
shear-rate intrinsic viscosity for the suspension of $ + O(s).  This agreement with the 
Einstein result for rigid spheres is of course to be expected, since at  equilibrium the 
particle appears to act as a rigid sphere as far as the external flow is concerned. 

8. Discussion 
We have shown in this paper how the theory of membrane deformation can be cast 

in a form suitable for problems involving free solid-fluid interfaces, and, by exploiting 
the linearity of Stokes equations, how a straightforward analysis of the time evolution 
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of the capsule is possible. The analysis here has been restricted, however, to  small 
deviations from sphericity, and to  tackle problems in which such deviations are large 
(notably for red blood cells where the basic state is a biconcave disk) a more general 
framework is needed. I n  addition, we have considered only elastic membranes, and in 
general a viscoelastic response is involved. The technique presented here can usefully 
be combined to tackle these harder problems with the method of Rallison & Acrivos 
(1978) which provides a numerical solution for finite deformations of the surface, and 
in addition follows in time the positions of Lagrangian points in the surface, thereby 
permitting more complex constitutive relations to be incorporated into the membrane 
dynamics. These generalizations will appear in a later study. 

This work was supported in part by NATO Research Grant no. 1442. 
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